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Abstract 

 
This paper applies the truncated singular value decomposition method (TSVD) 

with adaptive pruning L-curve technique to solve numerically the two dimensions ill-

posed inverse problem of gravity anomalies. The inverse problem here is to determine 

a plausible spatial variation of density within the earth that is consistent with a finite 

set of geophysical observations. To reduce the ambiguity; the problem was solved as 

an overdetermined one and linear constraints were added. The results obtained are 

compared to exact solutions of simple and complicated synthetic earth models with 

and without noise. It is found that TSVD with adaptive pruning L-curve technique is 

stable, robust and it always converges to the right solutions.  Furthermore, the method 

is successfully applied to a real data example from USA. 
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Introduction : 

 

The main target in gravity as in other geophysical prospecting methods is to 

find a plausible causative subsurface body from surface observation. Many authors 

divide the earth into an array of rectangular prisms with predefined geometry and the 

unknowns are the density (or any other physical property) of each prism, which is 

supposed to be constant and homogenous (e.g., [18]; [19]; [20]; [24], [27]; [28]; [29] 

and many others). Such problems are expressed as a linear system of equations.  

The numerical treatment of any linear system of equations (Ax=b) is not 

always easy. One has to check how large the condition number of matrix A. 

Numerical tools such as the singular value decomposition (SVD), can identify the 

linear dependencies and thus help to improve the model and lead to a modified system 

with a better-conditioned matrix. This modified system can then be solved by 

standard numerical techniques [4]. [13] postulated that any discussion of ill-

conditioned matrices requires knowledge of the SVD of the matrix A. In particular, 

the condition number of A is defined as the ratio between the largest and the smallest 

singular values of A. Hansen [15] classified ill-conditioned system into two main 

classes. First, Rank-deficient problems, which are characterized by the matrix A 

having a cluster of small singular values, and there is a well-determined gap between 

large and small singular values. Such problems can be solved by extracting the 

linearly independent information in A, to arrive to another problem with a well-

conditioned matrix. The second class of problems named, discrete ill-conditioned 

problems. In such problems, the singular values components of the solution, on the 

average, decay gradually to zero.  
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 The inverse problem considered in this paper is to determine a plausible 

spatial variation of density within the earth that is consistent with a finite set of 

geophysical observations. This problem, due to the above explanation, can be 

classified as a discrete ill-conditioned problem. The regularization of a discrete ill-

posed problem is a matter of finding out which erroneous SVD components to filter 

out [15]. It is more than merely filtering out a cluster of small singular values. There 

are many mathematical tools to apply like filter factors [9], the resolution matrix [30], 

L-curve [23] … etc. The TSVD method with adaptive L-curve technique is presented 

to solve the two dimensions ill-posed inverse problem of gravity anomalies. The 

advantage of this technique is to overcome the difficulties arising when we solve the 

noisy ill-posed system by using the standard SVD method. 

 

Formulation of the Problem: 

 

       Let us assume that the domain of the subsurface model can be divided into two 

dimensions arrays of MN ×  rectangular equidimensional prisms, each prism has a 

constant density, as in Figure 1.  Assume also that each prism has a uniform density 

iv , 1,...,i N= .  Then, the gravity effect of the  i-th  data point is given by [19]:  

                    gi=aijdj+ei,        i=1, …, n, j=1, …m                                              (1)  

where, di is the density of the th
j  block, ie  the noise associated with th

i  data point, and 

ija  is the matrix element representing the influence of the th
j  block on the th

i  gravity 

value. In the matrix notation equation (1) can be expressed as: 

                                                     G=AD+E                                                         (2)                                  
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where, G is the gravity effect, A  is the data kernels, D is the densities of the prisms, 

and E is the noise. The gravity inversion problem is the following: givenG , the 

observed gravity data, find a density distribution D which explainsG , taking into 

account a certain noise level. It is well known that the gravity inversion problem is an 

ill-posed problem, and characterized by unstable solutions [19].  

 

TSVD method: 
 
Let us consider the linear system (1), where, ,×∈Α  nm ≥  is a full-rank matrix. 

As we know the least-squares solution can be expressed in the form: 
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If the matrix A  is rank-deficient, i.e., the singular value min 0σ = . It's easy to solve 

(1) by ignoring the SVD components associated with the zero singular value. 

However, there is one or more small but nonzero singular values so we say that A  is 

numerically rank-deficient, i.e., there exists an integer nrk ≤= )(Aε  such that, for a 

given toleranceε   

,εσ ≤l  for all .,...,1 nkl +=                                                  (4) 

This integer k is, in fact, the numerical ε -rank of A , usually defined as  

),(min:)(
2

EAA +=
≤

rankr
E εε      (5) 

Hansen in (15, page 49) reported that the most common regularization strategy for 

numerical rank-deficient problems consists of two steps 

 
1. Replace the matrix A by a matrix of rank k . The usual choice for this rank- k  

matrix is: 
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Where, Ak is the closest rank- k matrix to A .i.e., we replace the small singular values 

lσ by zeros, .,...,1 nkl +=  

 
2. Compute the approximation solution by 
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This regularization strategy is known as TSVD and the parameter k  is called 

truncation parameter (see [15]). 

 

Ambiguity control: 

 Potential-field interpretation is characterized by an inherent ambiguity in the 

determination of the source from field data, which may leads to a loss of depth 

information [10]. Blakely [2] mentioned that by Green’s third identity, any potential 

field in a subregion can be reproduced by an infinite variety of surface (shallow) 

distributions. Also, the annihilator or the source distribution which produces a null 

field couldn’t be determined [26]. If the system is underdetermined, i.e. with more 

unknowns than data, this leads to algebraic ambiguity. Many authors solved such 

ambiguity problems by using additional information about the problem. The simplest 

way is to use a parametric discretization [22], in which the solution is assumed to 

consist of basic geometric body shapes with homogeneous source distributions. So, 

using 2-D array of prisms or using the model as a set of vertical prisms of variable 

depth to top solves such algebraic ambiguity. The field derivatives strongly contain 

the position of the prism source’s boundaries [3]; [8]; [12]. Other additional a priori 

information is implementing lower and upper density bounds and for a density 



6 
 

monotonically increasing with depth [11], imposing a condition of minimum volume 

to the causative body [19], constraining the source to have minimum momentum of 

inertia [14], requiring compactness along several axes using a priori information about 

the axes’ length [1], using approximate equality (linear) constraints [21] and many 

other ideas to reduce the ambiguity. 

 

 The ambiguity is controlled in the present paper by first, using the 2-D array 

of prisms to fix the geometry of the model, assuming homogeneous density for each 

prism. Second, the number of data points is set to be larger than the unknown 

parameters (overdetermined problem). Finally, linear constraints about the densities 

of the surface prisms (or others if information is available from wells) are added. 

 
L-curve regularization method: 

 The L-curve analysis plays an important role in the analysis phase of 

regularization problems. It is a plot for all valid regularization parameters of the 

discrete smoothing norm Ω(x reg) - e.g, the (semi) norm 2- of the regularized 

solution versus the corresponding residual norm 2. The L-curve clearly 

displays the compromise between minimization of these two quantities, which is the 

heart of any regularization method [15]. The optimal regularization parameter can be 

determined by locating the corner of such L-curve.  

 There are many methods to locate the corner e.g. using spline curve [17] and a 

more recent method called triangle method [5]. As the spline curve has an undesired 

tendency to track the unwanted local corners of the discrete L-curve, and therefore a 

preprocessing stage of smoothing was added. As the smoothing step depends on few 

parameters, the method is not adapted, [16]. They also stated that the triangle method 
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is complex and the increase in the number of parameters increases its complexity and 

time taken to calculate. A new method, named, adaptive pruning method has proved 

great efficiency in determining the corner more than the other two mentioned 

methods. 

The Adaptive Pruning Algorithm: 

Hansen et al. [17] describe a robust and adaptive implementation of the L-

curve criterion. The algorithm locates the corner of a discrete L-curve consisting of a 

log-log plot of corresponding residual and solution norms of regularized solutions 

from a method with a discrete regularization parameter (such as the TSVD used 

here).To achieve the required adaptivity and robustness, the new algorithm consists of 

two stages. In the first stage we compute corner candidates using L-curves at different 

scales or resolutions (not knowing a priori which scale is optimal). In the second stage 

we then compute the overall best corner from the candidates found in the first stage. 

 

Algorithm: 

1- Input m and n (number of parameters and data points). 
2- Compute A (data kernel matrix). 
3- If (synthetic), calculate b and add noise (o, 90, or 80 dB) 

Else if (real) read b from file. 
4- Input the number of constraints and the values them. 
5- Update A and b with such constraints. 
6- Compute [U, s, V] = csvd(A)  
7- Calculate rho (residual norm) and eta (solution norm). 

iAdg − , id ,   p,...,1i =  
8- Use adaptive pruning algorithm to locate the corner and draw the L-curve. 
9- Calculate TSVD solution for the truncation level determined. 
10- Convert the proper regularized solution vector ‘d’ into two dimensional array 

to draw the earth model as an image. 
11- If synthetic then draw the solution and the true earth models 

Else if real then draw solution earth model only. 
 

12- Draw observed and inverted gravity fields 
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 Our code is all written with Matlab 7.1, Calculating the forward (for synthetic 

examples) and inverse models, gravity effect, and drawing the earth models together 

with observed and inverted gravity fields. The regularization routines (Hansen, 2001) 

are included as functions. The code is automized to accept data, scale and linear 

constraints to start inversion and return back all drawings and results. 

 

Application to Synthetic Models 

The regularized TSVD method (using L-curve together with pruning algorithm)   

was tested on several synthetic earth models. We present here, as an example, the 

results obtained for three different earth models. Model 1 consists of 25 columns and 

6 rows, i.e. 150 blocks to invert for. The dimension of each block is 2m × 2m. The 

number of data points is 150 points, i.e. evenly-determined problem. The model 

includes an inclined dyke of density of 0.3gm/cm3 and a vertical one of density 

0.25gm/cm3. Term density in all models is referred to density contrast. 

 

The result is present in the form of true (synthetic) and inverted gravity fields 

together with the true and inverted density models shown in Figure (2). Figure (3)  

shows the L-curve and the corner determined by adaptive pruning algorithm. The 

corner is at 141, which means only 9 rows were cut. So, relatively few information 

was lost. The data were then contaminated by 90 DB noise. Figure (4) shows the 

regularized solution, where the L-curve corner is at 58. This means higher loss in 

information. Figures (5) shows the results of Model 1 contaminated with 80DB noise. 

Model 2 consists of 8×18 prisms each of 1m×1m. So, the unknown parameters are 

144. The corner of the L-curve is at 97 without adding any noise (Figure 6). The 
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inverted model shows good agreement with the true one (Figure 7). Results of Model 

2 after adding 90DB noise are displayed in Figure (8). Also higher noise were added 

(80DB) and the results are displayed in Figure (9).  

 
Application to field examples: 

 To illustrate the applicability of the proposed method; it was applied to an 

isolated Bouguer anomaly over San Jacino graben, southern California, USA. The 

sediments filling the graben display increasing density with depth are reported by [7]. 

The earth model was divided into 6×20 prisms of dimension 0.5 km×0.5 km. The 

number of stations was increased to 240 by linear interpolation using Matlab, while 

the unknowns were only 120. The equality constraints of the surface prisms were 

added. The resulted L-curve (Figure 11) shows that the proper solution is at the 

truncation level 62. The solution is displayed in Figure (12). It is clear that the density 

contrast decreases, i.e. density increases with depth proving compatibility with 

previous inversion results obtained by [7], [25], [6] and [21]. 

 

Conclusion: 

 

 We present a gravity inversion problem solved by truncated singular value 

decomposition, of proper truncation level using adaptive pruning L-curve. The 

formulation of the problem as an overdetermined one by increasing the data points 

helps together with the linear constraints to get a plausible solution. The proposed 

method may be applied to variety of geologic problems, including dykes, basins, 

geologic contacts, tunnels and salt domes. The residual or separated anomaly can be 

used for direct inversion.  
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Figure 2. Inversion results for model 1 without adding any noise to the observed 
(calculated) gravity field. 
 
 

10-20 10-15 10-10 10-5 100

100

15

30
45

60
75

90105
120

135

residual norm || A x - b ||2

so
lu

tio
n 

no
rm

 ||
 x

 ||
2

L-curve, TSVD corner at 141

 
Figure 3. L-curve for Model 1 (the observed is free of noise). 
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Figure 4. Inversion results of Model 1. After adding 90DB to the observed 
(calculated) gravity field. 
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Figure 5. Inversion results of Model 1 after adding 80 DB noise. 
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Figure 6. L-curve for Model 2 (the observed is free of noise). 
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Figure 7. Inversion results of Model 2 (noise free). 
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Figure 8. Inversion results of Model 2 after adding 90 DB noise. 
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Figure 9. Inversion results of Model 2 after adding 80 DB noise. 
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Figure 10. Comparison between evendetermined and overdetermined  solutions 
for model 1 (using the same linear constraints). 
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Figure 11. The L-curve for San Jacino Graben, southern California,USA. 
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                    Figure 12. Inversion results of San Jacino, southern California, USA. 
 
 


